Insulation and air-sealing
In most unfinished basements, moisture issues cause few problems because a leaky above-grade envelope allows the moisture to d ry. In many homes, though, attempts have been made to separate the basement from the conditioned living space above with batt insulation installed in the first-floor joist bays. These attempts usually fail, since air movement between the floors goes unchecked. In addition, as the lowest point in the house, the basement is subject to the high test negative pressure (air infiltration) due to the stack effect. Whether the basement is insulated or not, the mechanical system located there is unavoidably tasked with conditioning the basement. In many cases, adding a proper thermal barrier in the basement allows the mechanical system to work less and still be able to provide the required heating or cooling of the insulated basement.
When it comes to insulating the basement, there are code-minimum R-values that vary based on where the home is located. My approach is to provide an R-value that is proportional to my thermal goals above grade. I typically strive for a basement-wall R-value that is at least half of my above-grade wall-insulation value. My target slab R-value is typically at least half of my basement-wall R-value. At a minimum, these numbers usually work out to an R-10 slab and an R-20 foundation.
Rigid insulation, spray foam, blown insulation, and batt insulation all have their place in certain basements. I typically consider batt or blown insulation to be an additional level of insulation rather than my primary insulating method. I refrain from putting any of them directly against the foundation wall for a couple of reasons. First, they allow air movement between the foundation and the wall assembly, making it more difficult to control the surface temperature of the framing and drywall. Second, water permeating the foundation can easily move through the insulation and damage the framing and drywall.
I like to control the surface temperature of the foundation wall with rigid foam or spray foam. After one of them has been installed, I determine the risk of adding batt or blown insulation. I tend to avoid batt or blown insulation in high-risk basements, and I use it sparingly or as bulk-fill insulation in lower- risk basements.
In terms of air leakage, the concrete walls and slab do a fine job of providing air-barrier continuity along their surfaces. With a stone, brick, or concrete-block foundation, the air barrier becomes more of a challenge. In these cases, I tend to use a drainage curtain, rigid insulation with sealed joints, or spray foam as the primary air barrier linking the slab to the mud sill.
Fit and finish
When it comes to finish materials in the basement, I have heard hundreds of opinions on which ones to use, where to use them, and why. I rely on my initial risk assessment to guide me in material selection with my clients, but I try to accommodate their wishes. In most cases, the installation methods of the selected materials are of prime importance, not the materials themselves. For example, if drywall is to be used in a moderate or high-risk basement, then I will install a tall (8-in. or 10-in.) synthetic baseboard and hold the bottom edge of the drywall just under the top of the baseboard, which I will fasten to blocking. If the basement incurs a flood, the drywall is likely not to be part of the resulting problem. If a client desires carpet in a low-risk basement, I probably won’t have a problem with installing it wall-to wall. In basements of moderate and high risk, a better option is either an engineered-wood floor or a tile floor with large area rugs. Area rugs are easy to remove, clean, and reuse if they are part of a flood. In summary, my approach is pretty simple: As risk increases, materials used in a finished basement should be less permanent or more resistant to moisture and water.
Content by Steve Baczek. Drawings by Christopher Mills.
Source: FineHomeBuilding Magazine, Winter 2017 issue